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Abstract
The Newtonian potential is computed exactly in a theory that is fundamentally
non-commutative in the space–time coordinates. When the dispersion for the
distribution of the source is minimal (i.e. it is equal to the non-commutative
parameter θ ), the behaviour for large and small distances is analysed.

PACS number: 11.10.Nx

Introduction

Recently a new model of quantum field theory on non-commutative space–time, satisfying
Lorentz invariance and unitarity, has been proposed in [1, 2]: it is shown that there is no
need for the Weyl–Wigner–Moyal �-product [3–5] and the non-commutativity is carried by a
Gaussian cut-off in the Fourier transform of the fields. This is not an ad hoc regularization
device but is a result coming from the averaging operation on coherent states. This cut-off
(which depends on the non-commutative parameter θ [2]) is also present in the (Feynman)
propagator and is responsible for the UV finiteness of the theory [1, 2, 6].

The aim of this paper is to compute the modification of the Newtonian potential due
to the change of the Green’s function caused by the non-commutativity of the space–time
coordinates.

Newton’s law

In order to deal with a theory that is effectively non-commutative in the space–time coordinates,
we follow [1] and suppose that the propagator satisfies

−�xG(x, x ′) =
(√

a

π

)4

e−a(x−x ′)2
, (1)
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where �x = ∂2
t + ∇2

x , a = 1/4θ and θ is the non-commutative parameter with the dimensions
of an area2. Note that in the limit θ → 0 the Gaussian distribution becomes a delta function
and standard commutative theory is recovered. As usual the Newtonian potential V (x) is
related to the fluctuation of the 00 component of the metric h00(x) through V (x) = h00(x)/2
and the fluctuation is given by [7]

h00(x) = −8πGN

∫
d4x ′ G(x, x ′)T00(x

′), (2)

where GN is Newton’s constant and T00 is the 00 component of the stress tensor of the source
of the gravitational field. Since in a theory that is fundamentally non-commutative the concept
of a point is meaningless, the source cannot be a delta function but will be given by a Gaussian
distribution

T00(x) =
∫

d3q

(2π)3
e−i�q·�xf (q2), (3)

where f (q2) = e−α�q2
M , with α and M constants. We shall choose α = θ because we want to

consider a minimum dispersion for the source.
The Fourier transform of the propagator is called G(k) and it is implicitly defined as

G(x, x ′) =
∫

d4k

(2π)4
eikµ(xµ−x ′µ)G(k). (4)

Considering that the Fourier transform of a Gaussian distribution is still a Gaussian function,(√
1

4θπ

)4

e− 1
4θ

(x−x ′)2 =
∫

d4k

(2π)4
eikµ(x−x ′)µ e−θ(k2

0 +�k2), (5)

then G(k) can be obtained through equation (1):

G(k) = e−θ(k2
0 +�k2)

k2
0 + �k2

. (6)

From equations (2)–(4) and (6) one can write

h00(x) = −8πGN

∫
d4x ′

∫
d4k

(2π)4
eikµ(xµ−x ′µ) e−θ(k2

0 +�k2)

k2
0 + �k2

∫
d3q

(2π)3
e−i�q·�x ′

f (q2). (7)

Since the source does not depend on time we can use∫
dt ′ e−ik0t

′ = 2πδ(k0), (8)

and with the help of∫
d3x ′ ei�x ′ ·(�k−�q) = (2π)3δ(�k − �q), (9)

it is possible to simplify (7), obtaining the following equation:

h00(x) = −8πGN

∫
d3k

(2π)3
ei�k·�x e−θ�k2

�k2
f (k2). (10)

Performing the integration over the angular part of d3k one finds

h00(r) = −2GN

π

M

ir

∫ ∞

−∞
dk k eikr e−(θ+α)k2

k2 + ε2
, (11)

2 We are considering an Euclidean signature of the metric, coming from a Wick rotation of the time coordinate.
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where the definition of f (k2) has been used, with k =
√�k2, and the limit ε → 0 is understood3.

The integration can be performed exactly [9] and the Newtonian potential is found to be the
following:

V (r) = −GN

M

r
Erf

(
r

2
√

θ + α

)
, (12)

where V (r) = h00(r)/2 has been used.
First of all we note that if α � θ then the non-commutativity is screened by the source.

This is natural since the source must be localized as much as possible in space. But in a theory
that is fundamentally non-commutative, the smallest spread is given by θ .

We set now α = θ since we wish to analyse the minimum case. In the region for which
r � 2

√
2θ one obtains

V (r) = −GN

M

r


1 + e−r2/(8θ)


− 2√

π

√
2θ

r
+ O

(
2
√

2θ

r

)3




 . (13)

Numerically (on requiring that the correction is of order 1) one finds that the large distance
correction becomes important for the following critical value:

rc

2
√

2θ
� 0.4576. (14)

Since it is known that Newton’s law is verified up to a distance of the order of 200 µm [8], it is
then possible to find a constraint for θ, θ < 10−8m2. Of course due to the fact that Newton’s
law is not tested for very small distances, this constraint is not so strong. One has to use
precision measurements in order to have a significant bound. In the opposite region where
r 	 2

√
2θ one obtains

V (r) = −GN

M

r

[
r√

π(2θ)
+ O

(
r

2
√

2θ

)3
]

. (15)

It is interesting to note that there is no divergence (unlike the commutative case): the
introduction of the θ parameter gives a minimal length that regularizes the theory

V (0) = −GN

M√
π(2θ)

. (16)

Conclusions

The main result of this brief paper is given by equation (12). The calculation is exact and no
approximation has been made. We note that there is a deviation from the standard Newtonian
potential but the shape of the source can screen the effect of non-commutative space. In the
minimal case (i.e. the dispersion for the profile of the source is given by θ ) such a deviation
has been computed for the large and small distance approximations. In the first case we used
the corrections to Newton’s law in order to constrain the non-commutative parameter (but
the obtained bound is weak since Newton’s law is verified down to distances of the order of
200 µm). In the second case it is seen that there is a regular behaviour at r = 0. This reflects
the well-known fact that non-commutativity introduces a minimal length which regularizes
the theory.

3 As usual this limit has been introduced in order to regularize the integrand at k2 = 0.



2042 A Gruppuso

Acknowledgments

It is a pleasure to thank Euro Spallucci for useful suggestions and many comments on the
draft version of this paper. I am also grateful to Piero Nicolini, Anais Smailagic and Giovanni
Venturi for interesting discussions. I thank Roberto Casadio for collaboration in the early
stage of this work.

References

[1] Smailagic A and Spallucci E 2003 UV divergence-free QFT on noncommutative plane J. Phys. A: Math. Gen.
36 L517–21 (Preprint hep-th/0308193)

[2] Smailagic A and Spallucci E 2004 Lorentz invariance, unitarity in UV finite of QFT on noncommutative spacetime
J. Phys. A: Math. Gen. 37 1–10 (Preprint hep-th/0406174)

Smailagic A and Spallucci E 2004 Lorentz invariance, unitarity in UV finite of QFT on noncommutative spacetime
J. Phys. A: Math. Gen. 37 7169 (erratum) (Preprint hep-th/0406174)

[3] Weyl H 1927 Quantum mechanics and group theory Z. Phys. 46 1
[4] Wigner E P 1932 On the quantum correction for thermodynamic equilibrium Phys. Rev. 40 749–60
[5] Moyal J E 1949 Quantum mechanics as a statistical theory Proc. Camb. Phil. Soc. 45 99–124
[6] Nicolini P 2004 Vacuum energy momentum tensor in (2+1) NC scalar field theory Preprint hep-th/0401204
[7] Wald R M 1984 General Relativity (Chicago, IL: Chicago University Press)
[8] Hoyle C D, Schmidt U, Heckel B R, Adelberger E G, Gundlach J H, Kapner D J and Swanson H E 2001

Submillimeter tests of gravitational inverse square law: a search for ‘large’ extra dimensions Phys. Rev. Lett.
86 1418–21 (Preprint hep-ph/0011014)

[9] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series and Products (New York: Academic)


